15 research outputs found

    Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin.

    Get PDF
    The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs) are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE) and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants

    Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow–induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy

    Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Forster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micro-patterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow-induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy

    Mechanically Robust Plasma-Activated Interfaces Optimized for Vascular Stent Applications

    No full text
    The long-term performance of many medical implants is limited by the use of inherently incompatible and bioinert materials. Metallic alloys, ceramics, and polymers commonly used in cardiovascular devices encourage clot formation and fail to promote the appropriate molecular signaling required for complete implant integration. Surface coating strategies have been proposed for these materials, but coronary stents are particularly problematic as the large surface deformations they experience in deployment require a mechanically robust coating interface. Here, we demonstrate a single-step ion-assisted plasma deposition process to tailor plasma-activated interfaces to meet current clinical demands for vascular implants. Using a process control-feedback strategy which predicts crucial coating growth mechanisms by adopting a suitable macroscopic plasma description in combination with noninvasive plasma diagnostics, we describe the optimal conditions to generate highly reproducible, industry-scalable stent coatings. These interfaces are mechanically robust, resisting delamination even upon plastic deformation of the underlying material, and were developed in consideration of the need for hemocompatibility and the capacity for biomolecule immobilization. Our optimized coating conditions combine the best mechanical properties with strong covalent attachment capacity and excellent blood compatibility in initial testing with plasma and whole blood, demonstrating the potential for improved vascular stent coatings

    Rapid Endothelialization of Off-the-Shelf Small Diameter Silk Vascular Grafts

    No full text
    Synthetic vascular grafts for small diameter revascularization are lacking. Clinically available conduits expanded polytetrafluorethylene and Dacron fail acutely due to thrombosis and in the longer term from neointimal hyperplasia. We report the bioengineering of a cell-free, silk-based vascular graft. In vitro we demonstrate strong, elastic silk conduits that support rapid endothelial cell attachment and spreading while simultaneously resisting blood clot and fibrin network formation. In vivo rat studies show complete graft patency at all time points, rapid endothelialization, and stabilization and contraction of neointimal hyperplasia. These studies show the potential of silk as an off-the-shelf small diameter vascular graft

    Bioactive Materials Facilitating Targeted Local Modulation of Inflammation

    No full text
    Summary: Cardiovascular disease is an inflammatory disorder that may benefit from appropriate modulation of inflammation. Systemic treatments lower cardiac events but have serious adverse effects. Localized modulation of inflammation in current standard treatments such as bypass grafting may more effectively treat CAD. The present study investigated a bioactive vascular graft coated with the macrophage polarizing cytokine interleukin-4. These grafts repolarize macrophages to anti-inflammatory phenotypes, leading to modulation of the pro-inflammatory microenvironment and ultimately to a reduction of foreign body encapsulation and inhibition of neointimal hyperplasia development. These resulting functional improvements have significant implications for the next generation of synthetic vascular grafts. Key Words: covalent biomolecule immobilization, inflammation, interleukin-4, neointimal hyperplasia, plasma-based ion implantation, radical functionalized surface, vascular graf

    Plasma Synthesis of Carbon-Based Nanocarriers for Linker-Free Immobilization of Bioactive Cargo

    No full text
    Multifunctional nanoparticles are increasingly employed to improve biological efficiency in medical imaging, diagnostics, and treatment applications. However, even the most well-established nanoparticle platforms rely on multiple-step wet-chemistry approaches for functionalization often with linkers, substantially increasing complexity and cost, while limiting efficacy. Plasma dust nanoparticles are ubiquitous in space, commonly observed in reactive plasmas, and long regarded as detrimental to many manufacturing processes. As the bulk of research to date has sought to eliminate plasma nanoparticles, their potential in theranostics has been overlooked. Here we show that carbon-activated plasma-polymerized nanoparticles (nanoP<sup>3</sup>) can be synthesized in dusty plasmas with tailored properties, in a process that is compatible with scale up to high throughput, low-cost commercial production. We demonstrate that nanoP<sup>3</sup> have a long active shelf life, containing a reservoir of long-lived radicals embedded during their synthesis that facilitate attachment of molecules upon contact with the nanoparticle surface. Following synthesis, nanoP<sup>3</sup> are transferred to the bench, where simple one-step incubation in aqueous solution, without the need for intermediate chemical linkers or purification steps, immobilizes multiple cargo that retain biological activity. Bare nanoP<sup>3</sup> readily enter multiple cell types and do not inhibit cell proliferation. Following functionalization with multiple fluorescently labeled cargo, nanoP<sup>3</sup> retain their ability to cross the cell membrane. This paper shows the unanticipated potential of carbonaceous plasma dust for theranostics, facilitating simultaneous imaging and cargo delivery on an easily customizable, functionalizable, cost-effective, and scalable nanoparticle platform
    corecore